

Indices & Index laws

Roots of integers

Year 11

Q1. Learn with an example

ues ton

Find the real-number root.

$$\sqrt{4}$$

Write your answer in simplified form.

cey Idea

For real numbers a and b, and a positive integer n, a is an nth root of b if $a^n = b$. For example, 2 is a fourth root of 16 because $2^4 = 16$.

In the expression $a = \sqrt[n]{b}$, the symbol $\sqrt[n]{}$ is called the **radical**, n is called the **index**, and b is called the **radicand**. If n = 2, the radical is a square root and the 2 is not written: $\sqrt{}$.

If n is even and the radicand b is positive, $\sqrt[n]{b}$ is a positive real number. It is called the **principal root**.

olution

To start, identify the type of root in the question.

$$\sqrt{4}$$

The index is 2, so this is a square root.

Since $2^2 = 4$. 2 is the principal square root of 4.

Q2.

Find the real-number root.

Q3.

Find the real-number root.

For detailed working of this worksheet

Book a free trial today!

